Applied spatial statistics for public health data公共卫生数据应用空间分析 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线

Applied spatial statistics for public health data公共卫生数据应用空间分析电子书下载地址
- 文件名
- [epub 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 epub格式电子书
- [azw3 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 azw3格式电子书
- [pdf 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 pdf格式电子书
- [txt 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 txt格式电子书
- [mobi 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 mobi格式电子书
- [word 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 word格式电子书
- [kindle 下载] Applied spatial statistics for public health data公共卫生数据应用空间分析 kindle格式电子书
内容简介:
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data.
This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field
Requires only minimal background in public health and only some knowledge of statistics through multiple regression
Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure
Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks")
Exercises based on data analyses reinforce concepts
书籍目录:
Preface
Acknowledgments
1 Introduction
1.1 Why Spatial Data in Public Health?
1.2 Why Statistical Methods for Spatial Data?
1.3 Intersection of Three Fields of Study
1.4 Organization of the Book
2 Analyzing Public Health Data
2.1 Observational vsExperimental Data
2.2 Risk and Rates
2.2.1 Incidence and Prevalence
2.2.2 Risk
2.2.3 Estimating Risk: Rates and Proportions
2.2.4 Relative and Attributable Risks
2.3 Making Rates Comparable: Standardized Rates
2.3.1 Direct Standardization
2.3.2 Indirect Standardization
2.3.3 Direct or Indirect?
2.3.4 Standardizing to What Standard?
2.3.5 Cautions with Standardized Rates
2.4 Basic Epidemiological Study Designs
2.4.1 Prospective Cohort Studies
2.4.2 Retrospective Case–Control Studies
2.4.3 Other Types of Epidemiological Studies
2.5 Basic Analytic Tool: The Odds Ratio
2.6 Modeling Counts and Rates
2.6.1 Generalized Linear Models
2.6.2 Logistic Regression
2.6.3 Poisson Regression
2.7 Challenges in the Analysis of Observational Data
2.7.1 Bias
2.7.2 Confounding
2.7.3 Effect Modification
2.7.4 Ecological Inference and the Ecological Fallacy
2.8 Additional Topics and Further Reading
2.9 Exercises
3 Spatial Data
3.1 Components of Spatial Data
3.2 An Odyssey into Geodesy
3.2.1 Measuring Location: Geographical Coordinates
3.2.2 Flattening the Globe: Map Projections and Coordinate Systems
3.2.3 Mathematics of Location: Vector and Polygon Geometry
3.3 Sources of Spatial Data
3.3.1 Health Data
3.3.2 Census-Related Data
3.3.3 Geocoding
3.3.4 Digital Cartographic Data
3.3.5 Environmental and Natural Resource Data
3.3.6 Remotely Sensed Data
3.3.7 Digitizing
3.3.8 Collect Your Own!
3.4 Geographic Information Systems
3.4.1 Vector and Raster GISs
3.4.2 Basic GIS Operations
3.4.3 Spatial Analysis within GIS
3.5 Problems with Spatial Data and GIS
3.5.1 Inaccurate and Incomplete Databases
3.5.2 Confidentiality
3.5.3 Use of ZIP Codes
3.5.4 Geocoding Issues
3.5.5 Location Uncertainty
4 Visualizing Spatial Data
4.1 Cartography: The Art and Science of Mapmaking
4.2 Types of Statistical Maps
MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9
4.2.1 Maps for Point Features
4.2.2 Maps for Areal Features
4.3 Symbolization
4.3.1 Map Generalization
4.3.2 Visual Variables
4.3.3 Color
4.4 Mapping Smoothed Rates and Probabilities
4.4.1 Locally Weighted Averages
4.4.2 Nonparametric Regression
4.4.3 Empirical Bayes Smoothing
4.4.4 Probability Mapping
4.4.5 Practical Notes and Recommendations
CASE STUDY: Smoothing New York Leukemia Data
4.5 Modifiable Areal Unit Problem
4.6 Additional Topics and Further Reading
4.6.1 Visualization
4.6.2 Additional Types of Maps
4.6.3 Exploratory Spatial Data Analysis
4.6.4 Other Smoothing Approaches
4.6.5 Edge Effects
4.7 Exercises
5 Analysis of Spatial Point Patterns
5.1 Types of Patterns
5.2 Spatial Point Processes
5.2.1 Stationarity and Isotropy
5.2.2 Spatial Poisson Processes and CSR
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods
5.2.4 Heterogeneous Poisson Processes
5.2.5 Estimating Intensity Functions
DATA BREAK: Early Medieval Grave Sites
5.3 K Function
5.3.1 Estimating the K Function
5.3.2 Diagnostic Plots Based on the K Function
5.3.3 Monte Carlo Assessments of CSR Based on the K Function
DATA BREAK: Early Medieval Grave Sites
5.3.4 Roles of First- and Second-Order Properties
5.4 Other Spatial Point Processes
5.4.1 Poisson Cluster Processes
5.4.2 Contagion/Inhibition Processes
5.4.3 Cox Processes
5.4.4 Distinguishing Processes
5.5 Additional Topics and Further Reading
5.6 Exercises
6 Spatial Clusters of Health Events: Point Data for Cases and Controls
6.1 What Do We Have? Data Types and Related Issues
6.2 What Do We Want? Null and Alternative Hypotheses
6.3 Categorization of Methods
6.4 Comparing Point Process Summaries
6.4.1 Goals
6.4.2 Assumptions and Typical Output
6.4.3 Method: Ratio of Kernel Intensity Estimates
DATA BREAK: Early Medieval Grave Sites
6.4.4 Method: Difference between K Functions
DATA BREAK: Early Medieval Grave Sites
6.5 Scanning Local Rates
6.5.1 Goals
6.5.2 Assumptions and Typical Output
6.5.3 Method: Geographical Analysis Machine
6.5.4 Method: Overlapping Local Case Proportions
DATA BREAK: Early Medieval Grave Sites
6.5.5 Method: Spatial Scan Statistics
DATA BREAK: Early Medieval Grave Sites
6.6 Nearest-Neighbor Statistics
6.6.1 Goals
6.6.2 Assumptions and Typical Output
6.6.3 Method: q Nearest Neighbors of Cases
CASE STUDY: San Diego Asthma
6.7 Further Reading
6.8 Exercises
7 Spatial Clustering of Health Events: Regional Count Data
7.1 What Do We Have and What Do We Want?
7.1.1 Data Structure
7.1.2 Null Hypotheses
7.1.3 Alternative Hypotheses
7.2 Categorization of Methods
7.3 Scanning Local Rates
7.3.1 Goals
7.3.2 Assumptions
7.3.3 Method: Overlapping Local Rates
DATA BREAK: New York Leukemia Data
7.3.4 Method: Turnbull et al.’s CEPP
7.3.5 Method: Besag and Newell Approach
7.3.6 Method: Spatial Scan Statistics
7.4 Global Indexes of Spatial Autocorrelation
7.4.1 Goals
7.4.2 Assumptions and Typical Output
7.4.3 Method: Moran’s I
7.4.4 Method: Geary’s c
7.5 Local Indicators of Spatial Association
7.5.1 Goals
7.5.2 Assumptions and Typical Output
7.5.3 Method: Local Moran’s I
7.6 Goodness-of-Fit Statistics
7.6.1 Goals
7.6.2 Assumptions and Typical Output
7.6.3 Method: Pearson’s χ2
7.6.4 Method: Tango’s Index
7.6.5 Method: Focused Score Tests of Trend
7.7 Statistical Power and Related Considerations
7.7.1 Power Depends on the Alternative Hypothesis
7.7.2 Power Depends on the Data Structure
7.7.3 Theoretical Assessment of Power
7.7.4 Monte Carlo Assessment of Power
7.7.5 Benchmark Data and Conditional Power Assessments
7.8 Additional Topics and Further Reading
7.8.1 Related Research Regarding Indexes of Spatial Association
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering
7.8.3 Space–Time Clustering and Disease Surveillance
7.9 Exercises
8 Spatial Exposure Data
8.1 Random Fields and Stationarity
8.2 Semivariograms
8.2.1 Relationship to Covariance Function and Correlogram
8.2.2 Parametric Isotropic Semivariogram Models
8.2.3 Estimating the Semivariogram
DATA BREAK: Smoky Mountain pH Data
8.2.4 Fitting Semivariogram Models
8.2.5 Anisotropic Semivariogram Modeling
8.3 Interpolation and Spatial Prediction
8.3.1 Inverse-Distance Interpolation
8.3.2 Kriging
CASE STUDY: Hazardous Waste Site Remediation
8.4 Additional Topics and Further Reading
8.4.1 Erratic Experimental Semivariograms
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator
8.4.3 Nonparametric Semivariogram Models
8.4.4 Kriging Non-Gaussian Data
8.4.5 Geostatistical Simulation
8.4.6 Use of Non-Euclidean Distances in Geostatistics
8.4.7 Spatial Sampling and Network Design
8.5 Exercises
9 Linking Spatial Exposure Data to Health Events
9.1 Linear Regression Models for Independent Data
9.1.1 Estimation and Inference
9.1.2 Interpretation and Use with Spatial Data
DATA BREAK: Raccoon Rabies in Connecticut
9.2 Linear Regression Models for Spatially Autocorrelated Data
9.2.1 Estimation and Inference
9.2.2 Interpretation and Use with Spatial Data
9.2.3 Predicting New Observations: Universal Kriging
DATA BREAK: New York Leukemia Data
9.3 Spatial Autoregressive Models
9.3.1 Simultaneous Autoregressive Models
9.3.2 Conditional Autoregressive Models
9.3.3 Concluding Remarks on Conditional Autoregressions
9.3.4 Concluding Remarks on Spatial Autoregressions
9.4 Generalized Linear Models
9.4.1 Fixed Effects and the Marginal Specification
9.4.2 Mixed Models and Conditional Specification
9.4.3 Estimation in Spatial GLMs and GLMMs
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland
9.4.4 Additional Considerations in Spatial GLMs
CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9
9.5 Bayesian Models for Disease Mapping
9.5.1 Hierarchical Structure
9.5.2 Estimation and Inference
9.5.3 Interpretation and Use with Spatial Data
9.6 Parting Thoughts
9.7 Additional Topics and Further Reading
9.7.1 General References
9.7.2 Restricted Maximum Likelihood Estimation
9.7.3 Residual Analysis with Spatially Correlated Error Terms
9.7.4 Two-Parameter Autoregressive Models
9.7.5 Non-Gaussian Spatial Autoregressive Models
9.7.6 Classical/Bayesian GLMMs
9.7.7 Prediction with GLMs
9.7.8 Bayesian Hierarchical Models for Spatial Data
9.8 Exercises
References
Author Index
Subject Index
作者介绍:
LANCE A. WALLER, PhD, is an associate professor in the Department of Biostatistics at Emory University in Atlanta, Georgia. He received his PhD in Operations Research in 1992 from Cornell University. Dr. Waller was named Student Government Professor of th
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
网站评分
书籍多样性:3分
书籍信息完全性:3分
网站更新速度:6分
使用便利性:7分
书籍清晰度:8分
书籍格式兼容性:4分
是否包含广告:3分
加载速度:5分
安全性:9分
稳定性:5分
搜索功能:7分
下载便捷性:9分
下载点评
- 可以购买(544+)
- 无盗版(425+)
- pdf(553+)
- 差评(550+)
- 强烈推荐(423+)
- 差评少(297+)
- 书籍多(370+)
- 品质不错(246+)
- 好评多(201+)
- 图书多(128+)
- 愉快的找书体验(335+)
- 章节完整(253+)
下载评价
- 网友 谭***然:
如果不要钱就好了
- 网友 苍***如:
什么格式都有的呀。
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 谢***灵:
推荐,啥格式都有
- 网友 索***宸:
书的质量很好。资源多
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 濮***彤:
好棒啊!图书很全
- 网友 敖***菡:
是个好网站,很便捷
- 网友 利***巧:
差评。这个是收费的
- 网友 寇***音:
好,真的挺使用的!
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 师***怡:
说的好不如用的好,真心很好。越来越完美
- 网友 沈***松:
挺好的,不错
喜欢"Applied spatial statistics for public health data公共卫生数据应用空间分析"的人也看了
日益亲近 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
现货正版 液压阀原理使用与维护 第三版 张利平 液压阀经典图书 液压阀基础知识 液压阀故障诊断排除方法 机械设备管理教程书籍 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
何时雾散尽 居筱亦(音乐系才女×妹狂魔情感大戏!新增番外甜蜜小剧场5则+作者真情流露创作笔记+海量24万字全新完美修订) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
90天冲刺美院:美术高考经典指南(素描) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
餐厅管理 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
戏曲武功教程 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
民国通俗演义(上下) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
根植幼儿生活的主题教育活动(幼儿园“关爱课程”丛书) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
英语周计划系列丛书:4周全面突破BEC综合备考周计划(初级) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
贺师傅天天美食:爽口凉拌菜 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 全国计算机技术与软件专业技术资格(水平)考试历年真题必练(含关键考点点评)──信息系统管理工程师(100%真题呈现,软考性价比最高的真题集,与其考前心里没底,不如精做一本好真题书!) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 经典手抄报(校园手抄报设计制作分步讲解教程) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 优雅06:中国花艺 许淑真 著,何寄澎 编 中信出版社【正版保证】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 起风了 堀辰雄 著 桔子 译 黑龙江美术出版社【正版图书】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 【新华书店正版】正版包邮初中八年级下册音乐书简谱西师大版西师版8八年级音乐下册课本教材 初二2下册音乐 西南师范大学出版社八年级下册音乐书简谱西师版教材课本教科书 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 家族治理与家族企业治理模式发展研究 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 国际中国学论丛(第二辑) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 程序设计技术实验及学习指导 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- PCB设计流程规范和技巧(用KiCad设计DDS信号发生器) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 基础会计(第三版)(亚洲职业教育研究院) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
书籍真实打分
故事情节:6分
人物塑造:6分
主题深度:9分
文字风格:3分
语言运用:3分
文笔流畅:4分
思想传递:3分
知识深度:5分
知识广度:9分
实用性:6分
章节划分:7分
结构布局:3分
新颖与独特:9分
情感共鸣:6分
引人入胜:4分
现实相关:7分
沉浸感:5分
事实准确性:7分
文化贡献:9分