Making sense of data了解数据:探索数据分析与数据挖掘实用指南 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:6分
书籍信息完全性:4分
网站更新速度:4分
使用便利性:7分
书籍清晰度:7分
书籍格式兼容性:8分
是否包含广告:3分
加载速度:3分
安全性:8分
稳定性:8分
搜索功能:6分
下载便捷性:4分
下载点评
- 内容齐全(86+)
- azw3(182+)
- 差评少(535+)
- 在线转格式(594+)
- 藏书馆(602+)
- 盗版少(461+)
下载评价
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 薛***玉:
就是我想要的!!!
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 宓***莉:
不仅速度快,而且内容无盗版痕迹。
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 冯***丽:
卡的不行啊
- 网友 利***巧:
差评。这个是收费的
- 网友 温***欣:
可以可以可以
- 网友 习***蓉:
品相完美
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 扈***洁:
还不错啊,挺好
- 网友 后***之:
强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 师***怀:
好是好,要是能免费下就好了
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
正版书籍 配位化合物的结构和性质(第二版) 游效曾 科学出版社有限责任公司 9787030324221 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
【中商原版】画建筑 长销经典版 港台艺术原版 史帝夫波凯特 原点出版 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
中国物流与采购信息化优秀案例集2015 中国物流与采购联合会 编 著 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
六年级上册语文数学英语期末冲刺总复习人教版 小学生6年级语文数学英语期末冲刺100分课本同步专项强化训练期中期末测试题卷子天天练 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
新汉语水平考试模拟试题集 HSK 三级 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
1 城乡规划原理真题详解与考点速记(第三版) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
英国引进 我爱宝贝系列全套5册宝宝绘本0-1-2-3岁婴儿启蒙认知书晚安睡前故事儿童撕不烂早教书一周半到两三幼儿园书本6硬纸板书籍 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
勇敢说出来硬壳绘本3–6岁儿童故事书4一5幼儿园绘本优良品格培养幼儿成长阅读书籍6岁以上适合大班中小班宝宝的读物睡前故事图书 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
JJG307-2006《机电式交流电能表》实施指南 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
【翰德图书】温馨提醒:洗衣服请记得拿 我和万秀的成长故事! 港台原版图书籍台版正版繁体中文 张瑞夫ReefChang 心灵 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 城市轨道交通自动售检票系统及票务管理(第2版) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 零基础学炒股实战从入门到精通(同花顺版) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 爆品思维2:社交时代的创业法则 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 审计专业技术资格考试考点采分 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 逃家小兔 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 真题模拟全预测(基层类2019中公版浙江省公务员录用考试专用教材) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 资产评估 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 讲给孩子的中国地理(全三册) 刘兴诗【正版保证】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 2017全国勘察设计注册工程师公共基础考试历年真题详解(2005~2016)2017年全国勘察设计注 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 实战手绘POP海报(通信篇) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
书籍真实打分
故事情节:4分
人物塑造:6分
主题深度:8分
文字风格:6分
语言运用:9分
文笔流畅:7分
思想传递:9分
知识深度:3分
知识广度:9分
实用性:4分
章节划分:8分
结构布局:3分
新颖与独特:4分
情感共鸣:4分
引人入胜:4分
现实相关:4分
沉浸感:8分
事实准确性:9分
文化贡献:4分